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Figure 1. Our CamPoint achieves accurate neighbor selection and provides high-level information to facilitate global perception. (a) For
each target point, camera perspective slice distance is introduced to focus on identifying semantically related neighbors that belong to the
same part, while ignoring semantically unrelated neighbors. (b) Compared with state-of-the-art methods [15, 17, 24, 57, 72] on S3DIS [1],
ScanNetV2 [7] and ShapeNetPart [65], our method is implemented with lower parameters and offers higher inference speed.

Abstract

Local features aggregation and global information percep-
tion are the fundamental to point cloud segmentation. How-
ever, existing works often fall short in effectively identifying
semantic relevant neighbors and face challenges in endow-
ing each point with high-level information. Here, we pro-
pose CamPoint, an innovative method that employs virtual
cameras to solve the above problems. The core of Cam-
Point lies in introducing the novel camera visibility fea-
ture for points, where each dimension encodes the visibility
of that point from a specific camera. Leveraging this fea-
ture, we propose the camera perspective slice distance for
accurate relevant neighbor searching and design the cam-
era parameter embedding to deliver rich feature represen-
tations for global interaction. Specifically, the camera per-
spective slice distance between two points is defined as a
similarity metric derived from their camera visibility fea-
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tures, whereby an increased number of shared cameras ob-
serving both points corresponds to a reduced distance be-
tween them. To effectively facilitate global semantic per-
ception, we assign each camera an optimizable embedding
and then integrate these embeddings into the original spa-
tial features based on visibility attributes, thereby obtaining
high-level features enriched with camera priors. Addition-
ally, the state space model characterized by linear compu-
tational complexity is employed as the operator to achieve
global learning with efficiency. Comprehensive experiments
on multiple datasets show that our CamPoint surpasses the
current state-of-the-art in multiple datasets, achieving low
training cost and fast inference speed.

1. Introduction

With the rising demand for remote sensing [60], au-
tonomous driving [20], virtual reality [2], and robotic nav-
igation [6], point cloud segmentation has become a critical
technique for achieving accurate 3D environmental percep-



tion and spatial modeling. Earlier approaches circumvented
the challenge of modeling complex point cloud by project-
ing it into 2D data structures [20, 44, 66] or voxelising it
into 3D dense voxels [27, 42, 61] for learning; however,
this inevitably led to a loss of 3D information. To address
this, recent methods explore the combination of local ag-
gregation and global interaction strategies to fully lever-
age 3D features while maintaining high computational ef-
ficiency [10, 18, 56].

Effective local aggregation serves to expand the recep-
tive field, enhance the comprehension of local context, and
establish a robust foundation for the subsequent learning
in global manner. Here, accurate searching of neighbor-
ing points is critical, as the inclusion of semantically irrele-
vant neighbors can introduce unintended semantic ambigu-
ity. Existing works [19, 22, 55, 74] typically use Euclidean
distance as the sole metric for neighbor selection, which
can result in the misidentification of spatially proximate but
semantically irrelevant points as neighbors, while neglect-
ing spatially distant yet semantically related points. Global
information perception equips the model with a compre-
hensive understanding of scene structure and spatial lay-
out. However, low-level features derived from spatial po-
sitions often fail to provide effective representations for
global learning, resulting in an unstable optimization. Addi-
tionally, the attention mechanisms with quadratic complex-
ity commonly used in recent studies often result in signifi-
cant computational overhead when facilitating interactions
among multiple points [14, 31, 32, 67].

Despite impressive progress in point cloud segmentation,
effectively searching neighbors for local and efficiently per-
ceiving semantic for global remain the open challenges. In
this paper, we introduce CamPoint, a simple yet effective
method that advances the field by leveraging virtual cam-
eras as shown in Figure 1. Our approach stems from the in-
sight that objects frequently observed together across mul-
tiple viewpoints tend to exhibit shared spatial or functional
relationships. On this base, CamPoint constructs the camera
visibility feature to provide meaningful information and en-
hance contextual understanding (see Figure 2). Traditional
Euclidean distance, as a linear combination of perspective
information along canonical axes, is sensitive to scale and
overlooks object manifold structure. We augment it with
a new camera perspective slice distance, which measures
point similarity based on the statistical sharing of camera
viewpoints. This metric is nonlinear, scale-insensitive, and
captures object structure, improving the accuracy of neigh-
bor searching. For global perception, we transform origi-
nal low-level features into high-level representations via in-
corporating camera priors, thereby facilitating the semantic
capture. To further achieve computational efficiency, the
state space model [13] with linear complexity is utilized as
the interactive operator.
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Figure 2. To illustrate our motivation, we use different colors to
represent various camera visibility features, where closer colors
indicate higher feature similarity.

Technically, CamPoint initially employs multiple virtual
cameras to project the point cloud from distinct views, gen-
erating the camera visibility feature for each point accord-
ing to depth, where each dimension represents the likeli-
hood of that point being visible to a specific camera. By
computing camera visibility feature similarity, we can sim-
ply obtain the camera perspective slice distance between
two points. When integrated with Euclidean distance to
perform K-Nearest Neighbors (KNN) [35] algorithm, this
combined metric enhances nearest neighbor search, allow-
ing for precise identification of semantically relevant neigh-
bors. For global modeling, we optimize the different learn-
able embedding for each camera and then add the parame-
ters of visible cameras for each point, thereby constructing
high-level features. Due to the inherent disorder of point
clouds, directly applying them within state space models
can lead to suboptimal information interaction. To miti-
gate this, we introduce a random shuffling of point order
prior to processing, which facilitates a more comprehensive
exchange of information between points. In summary, our
contributions can be summarized as follows:
• We explore a novel framework based on virtual cameras,

CamPoint, for point cloud segmentation which effectively
learns contextual information.

• We propose the novel camera perspective slice distance
as the metric to accurately search semantically relevant
neighbors for local aggregation.

• We introduce the novel camera parameter embedding to
generate high-level features that enhance the capacity of
model for global semantic perception. Additionally, state
space model is introduced as the interaction operator to
alleviate computational overhead.

• Experimental results show that our CamPoint obtains
competitive performance in terms of both segmentation
accuracy, training cost and inference speed, compared



with state-of-the-art methods.

2. Related work
Point cloud segmentation has long served as a founda-
tional task in downstream applications involving 3D point
clouds. Earlier works [20, 21, 27, 44, 51, 54, 61] in this
area primarily rely on projection- and voxel-based two prin-
cipal paradigms for learning representations of point clouds.
These methods typically preprocess the unstructured 3D
point cloud data by converting it into intermediate struc-
tured representations, such as 2D grids [20, 44, 66, 73] or
3D voxel grids [27, 42, 46, 52, 53, 61], enabling the use of
convolutional neural networks (CNNs) for further model-
ing. While effective, these transformations can lead to sub-
stantial information loss due to the limitations inherent in
3D-to-2D projection and voxelization, which may dimin-
ish the precision of the results. Recently, PointNet [36]
introduces a novel pipeline by directly learning features
from raw point clouds, effectively preserving intricate de-
tails that might otherwise be lost in the process of voxeliza-
tion or projection. To further enhance performance, Point-
Net++ [37] proposes a local-global strategy to capture fine-
grained local details while gaining a comprehensive under-
standing of the global structure. Following this paradigm,
most state-of-the-art studies [30, 50, 56, 57, 69] advance
point cloud segmentation by enhancing either local aggre-
gation or global perception mechanisms, yielding impres-
sive results. In this paper, we investigate the representation
based on virtual cameras to enhance both local and global
modeling capabilities.
Local aggregation is essential for enhancing detailed con-
textual comprehension, with the neighbor searching and
feature aggregation as two main components. Point-
Net++ [37] pioneered the use of a shared-weight MLP to
effectively fuse neighboring features and PointNeXt [38]
designed a inverted residual module based on it to effec-
tively stack additional encoding layers. While PosPool [26]
demonstrates that directly applying raw relative coordi-
nates as weights to aggregate neighboring features can yield
strong performance, it may introduce considerable com-
plexity. To address this, DeLA [4] proposes spatial encod-
ing, which facilitates the retrieval of relative coordinates
at a local level. Despite recent advances, current meth-
ods [11, 16, 41, 45, 68, 70] underexplore neighbor searching
strategy, often relying solely on spatial distance. This re-
liance risks overlooking points that are spatially distant yet
semantically relevant, limiting local contextual capture. In
this work, we focus on selecting semantic related neighbors
with the novel camera perspective slice distance.
Global perception is employed to model long-range de-
pendencies and provide global understanding. To enhance
spatial feature interaction capabilities, attention mecha-
nisms [49] have been employed in place of MLP, func-

tioning as operators to facilitate efficient information trans-
fer [14, 33, 39, 62, 75]. Nevertheless, they suffer from
the dreaded bottleneck due to the quadratic computation.
Thanks to the linear complexity of state space model [8, 13],
PCM [72] and POINT MAMBA [24] design the mamba-
based model to efficiently process large-scale points in low
cost. In this paper, we propose to integrate camera param-
eter embedding with spatial features, grounded in the point
that features rich in high-level information facilitate global
optimization effectively.

3. Method
Given a point cloud P = {pi = (si, ei)|i = 1, ...,M},
where si ∈ R3 denotes point coordinates (x, y, z) and ei
is the feature embedding such as intensities and elongation,
our goal is to segment points based on their highest pre-
dicted classification scores. In this paper, we propose the
CamPoint, which enhances both local and global learning
by introducing camera views to tackle this task. We start by
constructing the essential camera visibility feature for each
point with pre-set virtual cameras (Section 3.1). Next, we
introduce the concept of camera perspective slice distance
to enable precise semantic neighbor search in local aggre-
gation (Section 3.2). Finally, camera parameter embedding
is proposed to provide enriched feature representations for
comprehensive global perception (Section 3.3). A detailed
sketch of our proposed CamPoint is illustrated in Figure 3.

3.1. Camera Visibility Feature
Camera visibility features are defined by the visibility of
a point being observed by given cameras, providing high-
level camera prior beyond low-level position. To construct
it, we first set multiple cameras and then perform perspec-
tive projection based on these cameras.
Camera setting. To capture comprehensive information, we
strategically position virtual cameras using Look-at method
in OpenGL [43], rather than setting camera positions ran-
domly. By specifying the position of the target point and
cameras, it generates a view matrix that maintains the cam-
era’s orientation toward the target. Here, we set the centroid
of the point cloud as the target point, and Farthest Point
Sampling (FPS) [9] is used to select R points from the point
cloud that are farthest from the centroid as the position of
cameras C. To capture internal spatial information, we also
place R cameras at the target point oriented in the opposite
direction, i.e., from the target point to the farthest points,
resulting in a total of 2R cameras. This design enables flex-
ible configuration of virtual camera positions and orienta-
tions, adapting effectively to diverse point cloud structures.
Camera projection. By performing camera projection on
point cloud, the visibility of the i-th point to the camera cj
can be determined through the pixel coordinates (uij , vij)
and depth dij . Specifically, we utilize the camera to project
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Figure 3. Framework of the proposed CamPoint. We first ob-
tain camera visibility feature via virtual cameras, then calculate the
camera perspective slice distance based on them and input it into
the KNN to locate neighboring points. Subsequently, these group-
ing points are sequentially passed through T blocks, each contain-
ing local feature fusion and global perception components. To re-
duce computational load, we downsample the points and perform
information fusion to capture local features. For efficient global
structure awareness, SSMs based on a random scanning strategy
is introduced as the foundational linear operator. Instead of vanilla
MLP, Invert Residual MLP [38] is employed to to enhance repre-
sentation capabilities.

points (xi, yi, zi) onto a two-dimensional image plane with
height H and weight W as follows:

uij , vij , dij = CamPro(xi, yi, zi; inrj , exrj), (1)

where CamPro(·) denotes camera projection, inrj is in-
trinsics and exrj is extrinsics of camera cj . All cameras are
set with the same intrinsics (refer to Appendix for details).
Camera visibility feature construction. To ensure general
applicability, we assume each point has infinite opacity.
When multiple points are mapped to the same pixel coor-
dinate (u, v), only the point with the minimal depth d∗uv
is considered visible. Additionally, points with excessive
depth d† empirically set to

√
3
2 are discarded, as they typ-

ically have weak relevance to regions of interest from the
current viewpoint. Then camera visibility feature cvfi of
i-th point is defined as cvfi = {cvf j

i |j = 1, ..., 2R}, where

cvfj
i =

{
1, if uij ∈ [0, H), vij ∈ [0,W ), dij = d∗uv , dij < d† ,

0, otherwise.
(2)

Given these features, we can accurate search relevant neigh-
bor and deliver rich feature representations for global inter-
action.

3.2. Camera Perspective Slice Distance for Local
Aggregation

We propose camera perspective slice distance to measure
semantic coherence between distinct points, enabling the
identification of meaningful neighboring points. Specifi-
cally, given camera visibility features of points pi and pg
point, we calculate camera perspective slice distance CD(·)
between them as follows:

CD(pi, pg) = ℓ1(cvfi, cvfg), (3)

where ℓ1(·) denotes 1-norm function, and cvfi, cvfg are
camera visibility features of pi, pg . In the implementation,
we replace the calculation of the ℓ1 norm with a bitwise
AND operation to achieve higher computational efficiency.

Subsequently, we combine Euclidean distance and cam-
era perspective slice distance into a composite metric, en-
abling the K-Nearest Neighbor algorithm to account for
both geometric proximity and semantic similarities. How-
ever, directly composing these two distance metrics is un-
reasonable, as they operate on different scales. To address
this issue, we normalize camera perspective slice distance
to the same scale as Euclidean distance as follows:

Norm(CD(pi, pg)) = γ
CD(pi, pg)× EDmax

2R
, (4)

where EDmax is the Euclidean distance between the two
most distant positions in the point cloud, and γ is the har-
monic factor that balances the influence of distance and
semantic constraints. According to this composite dis-
tance metric, we can search the N most relevant neighbors
pneari = {p1i , p2i , ..., pNi } for point pi as follows:

pneari = KNN(ED(pi,P), Norm(CD(pi,P))). (5)

Herein, KNN(·) denotes K-Nearest Neighbors function,
which is implemented with kd-tree algorithm [3]. ED(·)
denotes Euclidean distance.

By leveraging the camera perspective slice distance, we
equip the KNN with the ability to aware semantics in scale-
insensitive manner, allowing for accurate neighbor selec-
tion. Finally, point features {fi}Ni=1 where fi = MLP (pi)
are fused like DeLA [4] to generate local feature lfi ∈ Rd

of pi. More details of local fusion are provided in Appendix.

3.3. Camera Parameter Embedding for Global Per-
ception

Compared to low-level features, high-level information is
typically beneficial for perceiving the global structure. To
achieve this, we incorporate camera prior into point features
to provide a global perspective. Technically, camera param-
eter embedding cpe = {cpei ∈ R16|i = 1, ..., 2R} is intro-
duced to represent the viewpoint of cameras, serving as a
set of optimizable parameters. Associating with the camera



visibility feature cvfi, we add the camera parameter em-
bedding with visibility set to 1 into the local feature lfi to
derive high-level global feature gfi as follows:

gfi = MLP (Pool(cpe⊙ cvfi)) + lfi (6)

where MLP (·) encode feature with dimension as d, ⊙ de-
notes dot product and Pool(·) is the mean pooling per-
formed along camera axis. Then, high-level representa-
tion is used to modeling structure in global manner. In-
spired by Gu et al. [13], we leverage state space models
(SSMs) known as linear operators to process points, offer-
ing a more efficient alternative to quadratic-time attention
used in other works. Specifically, we implement our core
SSMs operator with the advanced selective scan SSMs in-
troduced by Mamba [12]. Due to the unordered nature of
point clouds, we do not employ sequential scanning or the
scanning method proposed in POINT MAMBA [24]. In-
stead, we randomly shuffle the order of points before in-
putting it into the SSMs and find that this simple strategy
yields promising results. Hence, global perception can be
formulated as:

{gfi}Oi=1 = SSMs(RScan({gfi}Oi=1)), (7)

where RScan(·) denotes the random scan, O is the number
of participating points. Due to the unordered nature of point
clouds, no multi-directional strategy is employed. More de-
tails can be seen in Appendix.

4. Experiment
In this section, we conduct experiments on point cloud se-
mantic segmentation and point cloud object part segmen-
tation tasks. To show the efficacy and generalizability, we
perform CamPoint to object classification task.

4.1. Segmentation
We conduct the following experiments with classical
methods (MinkUNet [5], PointNeXt [38], DeLA [4],
PointHR [40], AVS-Net [63], OA-CNNs [34], KPConvX-
L [47]), Transformer-based methods (Stratified Trans-
former [18], OctFormer [50], Swin3D [64], PointNat [69],
OneFormer [17]) and SSMs-based methods (PTv3 [57],
PCM [72], POINT MAMBA [24]) on S3DIS [1], Scan-
NetV2 [7] and ShapeNetPart [65]. (i) We conduct extensive
comparisons with other state-of-the-art methods to demon-
strate that CamPoint offers significant advantages in perfor-
mance, speed, and training cost. (ii) We validate our method
with the ablation study of camera perspective slice distance
and camera parameter embedding.

4.1.1. Semantic Segmentation
Dataset. S3DIS [1] is an indoor scene point cloud dataset
reconstructed from RGB-D images captured by a Matter-
port camera with three structured light sensors. It covers

six indoor areas across three buildings at Stanford, includ-
ing 272 rooms, with nearly 700 million points annotated
into 13 semantic classes. ScanNetv2 [7] dataset includes
1,513 room scans reconstructed from RGB-D frames, di-
vided into 1,201 scenes for training and 312 for validation.
Point clouds are sampled from vertices of reconstructed
meshes, with each point labeled into one of 20 semantic
categories (e.g., wall, floor, table).
Setting. The initial learning rate was set to 0.001, with a
weight decay of 0.05, using a cosine decay strategy with
AdamW [28]. For S3DIS [1], we trained the model for 100
epochs with the batch size of 8. For the ScanNetV2 [7], the
model was trained for 200 epochs with the batch size of 4.
We set camera number as 2×64, harmonic factor γ as 0.1
and neighbors number N as 24 by default for two datasets.
Result. Table 1 shows the quantitative results of our method
compared with state-of-the-art methods in the mean Inter-
section over Union (mIoU) on S3DIS and ScanNetV2. To
ensure a fair comparison, strategies like voting, pre-training,
or joint training are not be considered. It can be seen that
CamPoint demonstrates superior segmentation performance
with the val mIoU score of 83.3%, 77.7%, outperform-
ing the Transformer-based PTV3 [57] by 8.6%, 0.2% and
SSMs-based PCM [72] by 3.7%, 2.2%, respectively. This
proves that without major changes to the network architec-
ture, relying solely on camera visibility features obtained
from virtual cameras can effectively enhance performance.
In addition to CamPoint, we construct CamPoint-Tiny with
fewer parameters, yet it still achieved outstanding perfor-
mance. To demonstrate efficiency, we also present addi-
tional results in Table 2, such as parameter count, com-
putational load, and inference latency. Efficiency metrics
are measured on a single RTX 4090, excluding the first it-
eration to ensure steady-state measurements. We observe
that CamPoint not only achieves the lowest parameter count
across all tested datasets but also maintains superior speed.
Furthermore, we provide qualitative results in Figure 4 to
clearly demonstrate the superior performance of CamPoint.
Our model is able to predict semantic segmentation results
that are quite close to the ground-truth.

4.1.2. Object Part Segmentation
We compare CamPoint with classical methods
(PointMLP [29], PointNeXt [38], DeLA [4]), Transformer-
based methods (CurveNet [59], PVT [71], Stratified
Transformer [18]) and SSM-based methods (PCM [72],
Mamba3D [15]) on the Object part segmentation dataset
ShapeNetPart [65].
Dataset. The ShapeNetPart dataset contains approximately
16,000 3D models, spanning 16 object categories such as
chairs, tables, and airplanes. Each 3D model is annotated
into multiple parts (e.g., chair seat, backrest, armrest), with
semantic labels for each part.
Setting. The initial learning rate was set to 0.002, with a
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Figure 4. Visualization of point cloud semantic segmentation on S3DIS [1] and ScanNetV2 [7].

weight decay of 0.05, using a cosine decay strategy with
AdamW [28]. Additionally, the model is trained for 300
epochs with the batch size of 32. We set camera number as
2×64, harmonic factor γ as 0.1 and neighbors number N as
32 by default.
Result. We conduct verification on the point cloud object
part segmentation, reporting results as Instance mIoU and
Class mIoU metrics in Table 3. Our method is able to main-
tain its high performance against the competitive methods
for PCM [72] as well. As compared to the Transformer-
based approaches, CamPoint achieves a performance boost
of around 1.7 percent. Given the powerful baseline on
ShapeNetPart, achieving the substantial performance gains
observed on S3DIS is challenging. Nonetheless, compared
with other methods, the performance improvements intro-
duced by CamPoint remain highly significant.

4.1.3. Ablation Study
Effect of Module Design. We are mainly interested in the
camera visibility feature related module design, given that

other units (e.g., local feature fusion) have been well ex-
plored in previous methods. The core of our design is em-
ploying camera visibility feature to calculate camera per-
spective slice distance and generate camera parameter em-
bedding for global modeling. To substantiate these claims,
we incrementally integrate the proposed modules into four
distinct configurations and train the models accordingly.
In Table 4, Local denotes the local aggregation only with
Euclidean distance and Global is implemented with the
SSMs which is equipped with random scan. The Val mIoU
on S3DIS and ScanNetV2 demonstrate that both camera
perspective slice distance and camera parameter embed-
ding consistently enhance the performance of the baseline
model, indicating that the introduction of camera priors
holds promise as a generalizable information for results im-
provement. In Table 5, we report the results of PointNext-
s [38] and DeLA [4] with camera perspective slice distance,
which supports our point.
Number of Camera. As shown in Figure 2, the number of
cameras is crucial to CamPoint. A limited number of cam-



Table 1. Comparison of point cloud semantic segmentation on S3DIS [1] and ScanNetV2 [7].

Method S3DIS [1] ScanNetV2 [7]
Area5 mIoU 6-fold mIoU Val mIoU Test mIoU

MinkUNet [5] 65.4 65.4 72.2 73.6
PointNeXt [38] 70.5 74.9 71.5 71.2

DeLA [4] 74.1 - 75.9 -
PointHR [40] 73.2 - 75.4 76.6
AVS-Net [63] - - 76.0 -

OA-CNNs [34] 71.1 - 76.1 75.6
KPConvX-L [47] 73.5 - 76.3 -

Stratified Transformer [18] 72.0 - 74.3 73.7
OctFormer [50] - - 74.5 -

Swin3D [64] 72.5 76.9 76.4
PointNat [69] 72.8 77.8 - -

OneFormer [17] 72.4 75.0 76.6 -
PTv3 [57] 74.7 80.8 77.5 77.2
PCM [72] 79.6 - 75.5 -

POINT MAMBA [24] - - 74.6 -
CamPoint-Tiny (ours) 83.2 94.0 77.0 76.8

CamPoint (ours) 83.3 94.7 77.7 77.5

Table 2. Comparison of model efficiency based on the parameters, FLOPs, inference latency and training time.

Dataset Method Parameters (M) FLOPs (G) Inference Latency (ms) Training Time (h)

S3DIS [1]

PointNAT[69] 24.90 1.37 83 15
PTv3[57] 46.19 2.66 94 186

CamPoint-Tiny (Ours) 10.58 1.47 20 6
CamPoint (Ours) 15.78 3.70 22 7

ScanNetV2 [7]

OctFormer[17] 44.03 1.88 86 63
POINT MAMBA[24] 31.99 1.83 65 44

PTv3[57] 46.16 1.57 61 67
CamPoint-Tiny (Ours) 11.91 1.36 27 39

CamPoint (Ours) 16.06 1.80 28 44

Table 3. Comparison of point cloud instance segmentation on
ShapeNetPart [65].

Method ShapeNetPart [65]
Ins. mIoU Cls. mIoU

PointMLP [29] 86.1 84.6
PointNeXt [38] 86.7 84.2

DeLA [4] 87.0 85.8
CurveNet [59] 86.4 -

PVT [71] 86.4 -
Stratified Transformer [18] 86.6 85.1

PCM [72] 86.9 85.0
Mamba3D [15] 85.7 83.7

CamPoint-tiny (Ours) 86.7 85.0
CamPoint (Ours) 87.2 85.3

eras typically fails to capture each point adequately, while
an excessive number results in observational redundancy.

Table 4. Ablation of proposed moudles on S3DIS [1] and Scan-
NetV2 [7]. CPSD denotes camera perspective slice distance and
CPE denotes camera parameter embedding.

Model S3DIS [1] ScanNetV2 [7]
Local 72.9 74.8
Local + CPSD 76.2 75.5
Local + CPSD + Global 82.1 77.0
Local + CPSD + Global + CPE 83.3 77.7

Table 5. Generality of camera perspective slice distance. CPSD
denotes camera perspective slice distance.

Model S3DIS [1] ScanNetV2 [7]
PointNext-s [38] 63.4 64.5
PointNext-s [38] + CPSD 64.9 65.3
DeLA [4] 74.1 75.9
DeLA [4] + CPSD 77.8 76.7

The results in Table 6 align with our expectations: as the
number of cameras gradually increases, performance also



Table 6. Ablation on the number of camera.

Number of camera S3DIS [1] ScanNetV2 [7]
2×32 81.4 76.4
2×48 82.9 77.2
2×64 83.3 77.7
2×80 83.3 77.6

Table 7. Ablation on harmonic factor γ.

γ S3DIS [1] ScanNetV2 [7]
0.01 81.6 76.9
0.05 82.4 77.1
0.1 83.3 77.7

0.15 82.9 77.4

improves, leveling off at 2×64 . Therefore, to maintain gen-
erality, the number of cameras is set to 2×64 in all experi-
ments.
Harmonic Factor γ. In our work, γ is introduced to bal-
ance Euclidean distance with camera perspective distance.
As γ, CamPoint progressively gains the ability to capture
semantic information, effectively expanding contextual un-
derstanding. However, an excessively large γ may overlook
spatial correlations, introducing noise into neighbor selec-
tion. Based on the results in Table 4, we set γ to 0.1 for all
experiments. Notably, fine-tuning γ according to the dataset
may yield even better results.

4.1.4. Object Classification
To verify the generalizability and effectiveness, we also
adapt CamPoint to object classification task and compare it
with classical methods (PointNeXt [38], KPConvX-L [47]
), Transformer-based methods (PCT [14], PointConT [25])
and SSMs-based methods (PCM [72], PointMamba [23],
POINT MAMBA [24], Mamba3D [15]).
Dataset. ScanObjectNN [7] is a benchmark dataset for 3D
object recognition and classification, consisting of 115 cat-
egories and around 15,000 real-scanned objects with part-
level annotations. ModelNet40 [58] is a widely used 3D
object classification dataset with 40 object categories, in-
cluding chairs, tables, and airplanes.
Setting. The initial learning rate was set to 0.0005, with
a weight decay of 0.05, using a cosine decay strategy with
AdamW [28]. Additionally, the model is trained for 300
epochs with the batch size of 32. We set camera number as
2×8, harmonic factor γ as 0.1 and neighbors number N as
32 by default.
Result. In Table 8, Overall Accuracy (OA) and mean Accu-
racy (mAcc) are used to evaluate the performance of models
on ScanObjectNN [7] and ModelNet40 [58]. It can be seen
that, our CamPoint significantly outperforms existing meth-
ods. In detail, CamPoint achieves +0.3, +0.2 higher OA
than the Mamba3D [15], which is regarded as a remarkable
boost considering the challenge on this benchmark. Mean-

Table 8. Comparison of Object Classification on ScanOb-
jectNN [48] and ModelNet40 [58]

Method ScanObjectNN [48] ModelNet40 [58]
OA mAcc OA mAcc

PointNeXt [38] 87.7 85.8 93.2 90.8
KPConvX-L [47] 89.3 88.1 - -

PCT [14] - - 93.2 -
PointConT [25] 88.0 86.0 93.5 -

PCM [72] 86.9 85.0 93.1 90.6
PointMamba [23] 89.3 - 93.6 -

POINT MAMBA [24] - - 93.4 -
Mamba3D [15] 91.8 - 93.4 -

CamPoint-Tiny (Ours) 91.4 90.3 93.3 91.0
CamPoint (Ours) 92.1 91.1 93.6 91.3

while, as the parameter count increases, there is a clear trend
of performance improvement, indicating that CamPoint has
strong scalability potential.

5. Conclusion

In this work, we proposed CamPoint, an innovative ap-
proach to point cloud segmentation that leverages virtual
cameras to address limitations in existing methods, par-
ticularly in identifying semantically related neighbors and
enriching high-level feature representations for global per-
ception. By introducing the camera perspective slice dis-
tance for more accurate neighbor selection and the camera
parameter embedding to enhance feature representations,
CamPoint achieves notable advancements in both local and
global learning. Comprehensive experiments across multi-
ple datasets demonstrate that CamPoint surpasses the cur-
rent state-of-the-art in various metrics, while maintaining a
low computational cost and fast inference speed. These re-
sults underscore the effectiveness of integrating camera pri-
ors as a generalizable technique for enhancing performance
in point cloud segmentation.

6. Limitation and Future Work

While CamPoint achieves significant performance improve-
ments in point cloud segmentation by leveraging virtual
cameras, certain limitations remain. The reliance on pre-
defined camera placements, though effective, may limit
adaptability in highly complex environments. Additionally,
our method would fail to handle segmentation in dynamic
scenes. Future work will focus on enhancing adaptability
by exploring adaptive camera placement strategies that re-
spond to scene complexity in training phase. Furthermore,
we will extend CamPoint to other point cloud tasks, e.g.,
outdoor object detection and few-shot classification, to fur-
ther validate its effectiveness.
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